3.3.59 \(\int \frac {a+b \log (c (d+e x)^n)}{x (f+g x^2)} \, dx\) [259]

3.3.59.1 Optimal result
3.3.59.2 Mathematica [A] (verified)
3.3.59.3 Rubi [A] (verified)
3.3.59.4 Maple [C] (warning: unable to verify)
3.3.59.5 Fricas [F]
3.3.59.6 Sympy [F]
3.3.59.7 Maxima [F]
3.3.59.8 Giac [F]
3.3.59.9 Mupad [F(-1)]

3.3.59.1 Optimal result

Integrand size = 27, antiderivative size = 245 \[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x \left (f+g x^2\right )} \, dx=\frac {\log \left (-\frac {e x}{d}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{f}-\frac {\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 f}-\frac {\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f}-\frac {b n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f}-\frac {b n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 f}+\frac {b n \operatorname {PolyLog}\left (2,1+\frac {e x}{d}\right )}{f} \]

output
ln(-e*x/d)*(a+b*ln(c*(e*x+d)^n))/f-1/2*(a+b*ln(c*(e*x+d)^n))*ln(e*((-f)^(1 
/2)-x*g^(1/2))/(e*(-f)^(1/2)+d*g^(1/2)))/f-1/2*(a+b*ln(c*(e*x+d)^n))*ln(e* 
((-f)^(1/2)+x*g^(1/2))/(e*(-f)^(1/2)-d*g^(1/2)))/f+b*n*polylog(2,1+e*x/d)/ 
f-1/2*b*n*polylog(2,-(e*x+d)*g^(1/2)/(e*(-f)^(1/2)-d*g^(1/2)))/f-1/2*b*n*p 
olylog(2,(e*x+d)*g^(1/2)/(e*(-f)^(1/2)+d*g^(1/2)))/f
 
3.3.59.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.91 \[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x \left (f+g x^2\right )} \, dx=-\frac {-2 \log \left (-\frac {e x}{d}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )+\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )+\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )+b n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )+b n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}+d \sqrt {g}}\right )-2 b n \operatorname {PolyLog}\left (2,1+\frac {e x}{d}\right )}{2 f} \]

input
Integrate[(a + b*Log[c*(d + e*x)^n])/(x*(f + g*x^2)),x]
 
output
-1/2*(-2*Log[-((e*x)/d)]*(a + b*Log[c*(d + e*x)^n]) + (a + b*Log[c*(d + e* 
x)^n])*Log[(e*(Sqrt[-f] - Sqrt[g]*x))/(e*Sqrt[-f] + d*Sqrt[g])] + (a + b*L 
og[c*(d + e*x)^n])*Log[(e*(Sqrt[-f] + Sqrt[g]*x))/(e*Sqrt[-f] - d*Sqrt[g]) 
] + b*n*PolyLog[2, -((Sqrt[g]*(d + e*x))/(e*Sqrt[-f] - d*Sqrt[g]))] + b*n* 
PolyLog[2, (Sqrt[g]*(d + e*x))/(e*Sqrt[-f] + d*Sqrt[g])] - 2*b*n*PolyLog[2 
, 1 + (e*x)/d])/f
 
3.3.59.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2863, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \log \left (c (d+e x)^n\right )}{x \left (f+g x^2\right )} \, dx\)

\(\Big \downarrow \) 2863

\(\displaystyle \int \left (\frac {a+b \log \left (c (d+e x)^n\right )}{f x}-\frac {g x \left (a+b \log \left (c (d+e x)^n\right )\right )}{f \left (f+g x^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{d \sqrt {g}+e \sqrt {-f}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 f}-\frac {\log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 f}+\frac {\log \left (-\frac {e x}{d}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{f}-\frac {b n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f}-\frac {b n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{\sqrt {g} d+e \sqrt {-f}}\right )}{2 f}+\frac {b n \operatorname {PolyLog}\left (2,\frac {e x}{d}+1\right )}{f}\)

input
Int[(a + b*Log[c*(d + e*x)^n])/(x*(f + g*x^2)),x]
 
output
(Log[-((e*x)/d)]*(a + b*Log[c*(d + e*x)^n]))/f - ((a + b*Log[c*(d + e*x)^n 
])*Log[(e*(Sqrt[-f] - Sqrt[g]*x))/(e*Sqrt[-f] + d*Sqrt[g])])/(2*f) - ((a + 
 b*Log[c*(d + e*x)^n])*Log[(e*(Sqrt[-f] + Sqrt[g]*x))/(e*Sqrt[-f] - d*Sqrt 
[g])])/(2*f) - (b*n*PolyLog[2, -((Sqrt[g]*(d + e*x))/(e*Sqrt[-f] - d*Sqrt[ 
g]))])/(2*f) - (b*n*PolyLog[2, (Sqrt[g]*(d + e*x))/(e*Sqrt[-f] + d*Sqrt[g] 
)])/(2*f) + (b*n*PolyLog[2, 1 + (e*x)/d])/f
 

3.3.59.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2863
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_)) 
^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a 
 + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
 
3.3.59.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.66 (sec) , antiderivative size = 415, normalized size of antiderivative = 1.69

method result size
risch \(\frac {b \ln \left (\left (e x +d \right )^{n}\right ) \ln \left (x \right )}{f}-\frac {b \ln \left (\left (e x +d \right )^{n}\right ) \ln \left (g \,x^{2}+f \right )}{2 f}-\frac {b n \operatorname {dilog}\left (\frac {e x +d}{d}\right )}{f}-\frac {b n \ln \left (x \right ) \ln \left (\frac {e x +d}{d}\right )}{f}+\frac {b n \ln \left (e x +d \right ) \ln \left (g \,x^{2}+f \right )}{2 f}-\frac {b n \ln \left (e x +d \right ) \ln \left (\frac {e \sqrt {-f g}-g \left (e x +d \right )+d g}{e \sqrt {-f g}+d g}\right )}{2 f}-\frac {b n \ln \left (e x +d \right ) \ln \left (\frac {e \sqrt {-f g}+g \left (e x +d \right )-d g}{e \sqrt {-f g}-d g}\right )}{2 f}-\frac {b n \operatorname {dilog}\left (\frac {e \sqrt {-f g}-g \left (e x +d \right )+d g}{e \sqrt {-f g}+d g}\right )}{2 f}-\frac {b n \operatorname {dilog}\left (\frac {e \sqrt {-f g}+g \left (e x +d \right )-d g}{e \sqrt {-f g}-d g}\right )}{2 f}+\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i \left (e x +d \right )^{n}\right )}{2}+\frac {i \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b}{2}+\frac {i \pi \,\operatorname {csgn}\left (i \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b}{2}-\frac {i \pi \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{3} b}{2}+b \ln \left (c \right )+a \right ) \left (\frac {\ln \left (x \right )}{f}-\frac {\ln \left (g \,x^{2}+f \right )}{2 f}\right )\) \(415\)

input
int((a+b*ln(c*(e*x+d)^n))/x/(g*x^2+f),x,method=_RETURNVERBOSE)
 
output
b*ln((e*x+d)^n)/f*ln(x)-1/2*b*ln((e*x+d)^n)/f*ln(g*x^2+f)-b*n/f*dilog((e*x 
+d)/d)-b*n/f*ln(x)*ln((e*x+d)/d)+1/2*b*n/f*ln(e*x+d)*ln(g*x^2+f)-1/2*b*n/f 
*ln(e*x+d)*ln((e*(-f*g)^(1/2)-g*(e*x+d)+d*g)/(e*(-f*g)^(1/2)+d*g))-1/2*b*n 
/f*ln(e*x+d)*ln((e*(-f*g)^(1/2)+g*(e*x+d)-d*g)/(e*(-f*g)^(1/2)-d*g))-1/2*b 
*n/f*dilog((e*(-f*g)^(1/2)-g*(e*x+d)+d*g)/(e*(-f*g)^(1/2)+d*g))-1/2*b*n/f* 
dilog((e*(-f*g)^(1/2)+g*(e*x+d)-d*g)/(e*(-f*g)^(1/2)-d*g))+(-1/2*I*b*Pi*cs 
gn(I*c)*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)+1/2*I*b*Pi*csgn(I*c)*csgn(I* 
c*(e*x+d)^n)^2+1/2*I*b*Pi*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)^2-1/2*I*b* 
Pi*csgn(I*c*(e*x+d)^n)^3+b*ln(c)+a)*(1/f*ln(x)-1/2/f*ln(g*x^2+f))
 
3.3.59.5 Fricas [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x \left (f+g x^2\right )} \, dx=\int { \frac {b \log \left ({\left (e x + d\right )}^{n} c\right ) + a}{{\left (g x^{2} + f\right )} x} \,d x } \]

input
integrate((a+b*log(c*(e*x+d)^n))/x/(g*x^2+f),x, algorithm="fricas")
 
output
integral((b*log((e*x + d)^n*c) + a)/(g*x^3 + f*x), x)
 
3.3.59.6 Sympy [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x \left (f+g x^2\right )} \, dx=\int \frac {a + b \log {\left (c \left (d + e x\right )^{n} \right )}}{x \left (f + g x^{2}\right )}\, dx \]

input
integrate((a+b*ln(c*(e*x+d)**n))/x/(g*x**2+f),x)
 
output
Integral((a + b*log(c*(d + e*x)**n))/(x*(f + g*x**2)), x)
 
3.3.59.7 Maxima [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x \left (f+g x^2\right )} \, dx=\int { \frac {b \log \left ({\left (e x + d\right )}^{n} c\right ) + a}{{\left (g x^{2} + f\right )} x} \,d x } \]

input
integrate((a+b*log(c*(e*x+d)^n))/x/(g*x^2+f),x, algorithm="maxima")
 
output
-1/2*a*(log(g*x^2 + f)/f - 2*log(x)/f) + b*integrate((log((e*x + d)^n) + l 
og(c))/(g*x^3 + f*x), x)
 
3.3.59.8 Giac [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x \left (f+g x^2\right )} \, dx=\int { \frac {b \log \left ({\left (e x + d\right )}^{n} c\right ) + a}{{\left (g x^{2} + f\right )} x} \,d x } \]

input
integrate((a+b*log(c*(e*x+d)^n))/x/(g*x^2+f),x, algorithm="giac")
 
output
integrate((b*log((e*x + d)^n*c) + a)/((g*x^2 + f)*x), x)
 
3.3.59.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x \left (f+g x^2\right )} \, dx=\int \frac {a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )}{x\,\left (g\,x^2+f\right )} \,d x \]

input
int((a + b*log(c*(d + e*x)^n))/(x*(f + g*x^2)),x)
 
output
int((a + b*log(c*(d + e*x)^n))/(x*(f + g*x^2)), x)